Relative energy response of an OSLD system for RT dosimetry in the keV energy range

Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens

Background

This work studies the beam quality correction factor, k_o, for application of the latest commercial Optically Stimulated Luminescence Dosimetry (OSLD) system based on **BeO** ceramic in the keV energy range (including both medium-dependent energy dependence, **k_{Q.M}**, and **intrinsic energy dependence**, **k_{Q.INT}**).

Materials & Methods

OSLDs (myOSLchip, RadPro Int. GmbH) were irradiated in solid water using a 6MV linac beam, and in air using the 9 beam qualities of an orthovoltage therapy system (XStrahl200, XSTRAHL LTD). This provided the calibration coefficient $N_D = \frac{D_W}{M}$ for the different beam qualities, Q_i , and in turn $\mathbf{k}_Q = \left(\frac{D_w}{M}\right)_{Q_{ref}=6\ MV}^{Q_i}$. $\mathbf{k}_{Q,M} = \left(\frac{D_w}{D_{BeO}}\right)_{Q_{ref}=6\ MV}^{Q_i}$ was approximated using Burlin cavity theory with data from NIST for the max E, mean E, and full spectrum of Q_i, and 3 models for the derivation of mean chord length. $k_{Q,INT} = \left(\frac{D_{BeO}}{M}\right)_{Q_{ref}=6 MV}^{Q_i}$ was estimated by

the ratio of k_o by k_{o.M}. Results

k_o increased (system under-responds) with decreasing energy (up to 1.60 for Q_i with 24 keV mean E). k_{O.M} increases as energy decreases (up to 1.11 for Q_i with 24 keV mean E), in agreement within 2% with the literature. These results imply a considerable intrinsic energy dependence with k_{o.INT} up to 1.45 for 24 keV mean E.

Conclusion

k_{Q.INT} must be considered in myOSLchip based absolute dosimetry in brachytherapy or orthovoltage beams. Relative dosimetry necessitates the careful review of spectral changes. Accurate k_{O.INT} estimation requires further work. Its effect can be abated by use of reference quality close to the experimental one at the expense of increased uncertainty.

Christos Koutsoulas, Panagiotis Papagiannis

Fig. 1: Beam quality factor (k_{0}) in the keV range (E shown are max E for the Q_i used) relative to 6 MV

Fig. 2: (Left): Relative energy response $(1/k_{0.M})$ versus beam quality Q_i, calculated using Burlin cavity theory for mean E, max E and full spectrum of Q_i

(Right): corresponding results of intrinsic energy dependence k_{O.INT} versus beam quality Q_i