Intercomparison of MRI based polymer gel dosimetry readouts implemented by 1.5T and 3T clinical MRI systems

Angeliki Ntouli¹, Georgios Kalaitzakis¹, Evangelos Pappas³, Vereniki Mari¹, Antonis Papadakis⁴, Maria Tolia², Michalis Mazonakis¹, Thomas G. Maris ¹

¹Department of Medical Physics, University of Crete, Heraklion, Greece, ²Department of Radiotherapy, University of Crete, Heraklion, Greece, ³Department of Biomedical Sciences, University of West Attica, Athens, Greece, ⁴Department of Medical Physics, University General Hospital of Heraklion, Crete, Greece.

Background

• Polymer gel dosimeters (PGD) offer 3D dose distribution for radiotherapy QA.

 Accurate MRI readouts are essential for assessing dose spatial distribution.

Purpose

To compare dosimetric readouts of 1.5T and 3T clinical MRI systems for PGD.

Materials & Methods

• Study Design: MRI was conducted on the Prime head phantom (RTsafe, Athens, Greece), containing a PGD insert, after VMAT irradiation with 6-MV photons, targeting three tumor sites with a prescribed dose of 20 Gy to each tumor.

• MRI scheme: T2 measurements were conducted utilizing a Multi-echo HASTE sequence with 4 TEs. T1 measurements were obtained utilizing an IR HASTE sequence with 11 TIs. T2 and T1 measurement protocols were performed on both 1.5T and 3T clinical MRI systems, utilizing a 2 channel and a 20 channel head coil respectively.

• Signal-to-Noise (SNR) measurements: SNR was calculated for irradiated and nonirradiated areas.

 1D, 2D, and 3D Gamma Index (GI) analyses for both MRI scanners were performed based on T2-HASTE measurements.

• 50% reduction in acquisition time when using the 3T MRI clinical system. • Significant SNR increase (~30%) on the 3T MRI clinical system. irradiated areas: SNR 1.5T = 51.77

systems.

 Gamma Index Passing Rate > 92% with Dose Difference (DD)/Distance to Agreement (DTA): 5%/2mm criteria for both MRI scanners.

Fig.1: Color T2 and T1 parametric maps in 1.5T and 3.0T clinical MRI systems of 3 irradiated tumors each of which received a dose of 20 Gy. Noticeable T2 and T1 differences on the irradiated and non-irradiated areas between the two different static magnetic fields.

Results

SNR 3T = 158.94 non-irradiated areas:

SNR 1.5T = 63.88 SNR 3T = 197.04 • High level of agreement between TPS and PGD dose response on both clinical MRI

Fig.2: 2D Gamma Index analysis on 1.5T and 3.0T MRI scanners in sagittal plane at the location depicted by the red area.

1.5 T			
Structure	DTA (mm)	DD(%)	GIPR*(%)
Tumor 1	2	5	97.60
Tumor 2	2	5	98.39
Tumor 3	2	5	99.73
3.0 T			
Structure	DTA (mm)	DD (%)	GIPR*(%)
Tumor 1	2	5	92.76
Tumor 2	2	5	95.96
Tumor 3	2	5	94.14
*GIPR: Gamma Index Passing Rate			

Table 1. Results from the 3D gamma index analyses, comparing gelmeasured (reference) with the TPS-calculated dose distributions using 5%/2mm passing criteria for both MRI scanners.

 Using a 3T MRI clinical system with quantitative T2-HASTE sequences, significantly shortens acquisition time while preserving image quality. • A threefold increase in SNR on the 3T MRI scanner enhances the reliability of dose readout. • Both MRI clinical systems provide accurate and consistent dosimetric measurements.

Conclusions