

FLASH Radiation Therapy: A Review on the Ultra-high Dose Rate Paradigm of Radiotherapy

A. Koutsostathis¹, V. Rangos¹, A. Adamopoulou¹, C. Koumenis², A. G. Georgakilas¹

¹ Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Greece ² Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America

NATIONAL TECHNICAL UNIVERSITY OF ATHENS School of Applied Mathematical and Physical Sciences *Department of Physics*

FLASH Radiation Therapy: A Review on the Ultra-High Dose Rate Paradigm of Radiotherapy

Fig. 1. Survival curves for X-Ray irradiation of *Serratia marcescens* with \dot{D} ~ 5 − 10 krad µs⁻¹ [2].

Background: What is FLASH Radiation Therapy

FLASH Radiotherapy (**FLASH-RT**) is a new paradigm of radiation therapy (RT), featuring **ultra-high Dose rate** (UHDR) radiation of tumours, of **Dose rate** (*D*ሶ) **40 Gy s -1 or higher**. The so-called **FLASH effect** can be defined as *the in vivo effect in which administration of radiation with UHDR can reduce the radiotoxicity in normal tissue, with little to no impact of the anti-tumour effect of the radiation* [1]. The event was originally **observed in 1959** [2] and was brought into the foreground of modern cancer treatment research by **Favaudon** *et al***.** [3] in **2014**; ever since FLASH has been an active research field.

after conventional (¹³⁷Cs γ-Rays, \dot{D} = 0.03 Gy s⁻¹) and FLASH (4.5 MeV *e*-, $\dot{D} = 60$ Gy s⁻¹) irradiation [3].

60% 40% 20%

Fig 4. The **Simultaneous Dose and Dose Rate Optimisation** method, employs **UHDR transmission beams** (TB) of *p* + (Bragg peak outside of the body) to irradiate the **tumour boundary**, and **non-UHDR** *p***⁺ to form Bragg Peaks** (BP) **inside the tumours** [7].

Methods: Modifications of p^+ CONV-RT settings for FLASH 3

Fig. 5. PHASER is a **compact** system for Bremsstrahlung-produced X-Rays; a network of 16 **klystrinos** is connected to 16 **LINACs** (DRAGONs), of cellindependent RF power distribution, followed by a system (SPHINX) of **scanning magnets**, Bremsstrahlung **targets** and **collimators**. The geometry shares the same isocentre with a **CT scanner** ring [8 - 9].

- \cdot T_{VHEE} \sim 50 250 MeV
- •**increased depth** penetration and **indifference to medium inhomogeneities**
- economical modifications of existing *e* LINACs
- •quadrupole-magnet focusing allows for **spread-out** *e***- peak** over the target region
- •proposed VHEE LINACs to bunch at **C- and X-band** frequency (**4 - 12 GHz**) and gradient (**50 - 100 MeV m-1**) ranges

Very High-Energy Electron (**VHEE**) beams

$Methods: Novel systems for FLASH-RT'$

Fig. 6. Monte-Carlo simulations for the normalised Bragg curves of 250 MeV *e*- of different types of beam focusing. [10].

Results: Widely supported theories on the FLASH effect

FLASH effect: complex and unclear \rightarrow importance of exploring the specific mechanism behind it

Fig. 8. O_2 depletion's and reduced ROS levels' possible contribution to the sparing effect of FLASH in healthy cells [13,14,16]

(physicochemical and biological)

lower toxicity

higher toxicity

I lower peroxidised compounds & iron content

2. Metabolism of peroxidised compounds & Fenton chemistry

3. Free radical recombination

FLASH effect attributed to the **different metabolism** of **peroxidised compounds** and labile **iron** content between **tumor** & **normal** cells [22] maintain the metabolic process **less**

susceptible to **damage** from Fenton chemistry

Fig. 9. Model of peroxidised compound metabolism and Fenton chemistry in FLASH [15, 22].

Labarbe *et al*. [23]: theoretical model based on the formation & decay dynamics of ROS (**ROO∙** & **R∙**)

- for **ROO∙** & **R∙** is known that:
- **interaction** with **DNA** & ✓ induction of chromosomal breaks, aneuploidy, mutation
	- \rightarrow **cell death**
- **✓ reaction** with unsaturated **lipids** to generate **ROOH**

in the framework of Labarbe: rapidly elevated [ROO∙] & [R∙] due to UHDR

! ROO∙ & **R∙** can undergo

self-recombination increased proportion of recombination reactions & subsequently cell damage

is reduced

Results: Widely supported theories on the FLASH effect 6

4. Circulating immune cell protection hypothesis [13] Partial irradiation of blood

- \checkmark found through modeling & computation
- \checkmark studies on heart and abdomen of mice exhibited unexpected results [17,18]

volume

↓ further exploration and validation

Cytokines & FLASH [19]

\checkmark decreased lung injury by reducing stem cells by 50% compared to CONV-RT [21] **maintanance of anti-tumor effect**

- Shi et al. (intestinal crypts of mice) [22]
- **minimization** of the probability ✓ of **DNA breakage**
- **maintenance** of **genomic** ✓ **stability**
- ✓ reduction of cGAS-STING pathway signalling activation
- ✓ FLASH-RT seems to **reduce** the **expression of TGF-β** in normal tissues (important role in regulating immune system and tumor growth)
- \checkmark possible explanation of protective effect in healthy cells

5. Stem cell niche preservation [14]

reduced stem cell senescence

- ✓ preserved regenerative capacity
- ✓ reduced inflammatory cytokines which lead to tissue damage **lung protection**
-

6. DNA integrity hypothesis

Fig. 11. DNA integrity hypothesis: minimising DNA breaks and limiting pathway signalling activation

Fig. 10. Effect of FLASH-RT on immune function (left) & alteration in the expression of certain cytokines as a possible contributor to the sparing effect (down)

FLASH Radiation Therapy: A Review on the Ultra-High Dose Rate Paradigm of Radiotherapy

 $1b:3$ weeks

- Varian ProBeam, 51 61 Gy s⁻¹
- 8/12 reported **partial or total pain relief**

Mascia *et al*. (2023) - FAST-01 human trial [24]

- Proteus Plus Cyclotron, 230 MeV, 122 Gy s⁻¹
- **Better preservation** of cardiac function and **reduced inflammatory response**

Kyle Kim *et al*. (2024) – Mice [26]

- 5.6 MeV LINAC 166 Gy s⁻¹
- **Complete tumour response**, minimal side effects

- 4.5 MeV Kinetron & 6 MeV Oriatron, 300 Gy s⁻¹
- Minimal skin damage at high doses, durable **tumour control** (84% survival rate in cats).

Zhang *et al*. (2023) – Mice [18]

- 224MeV proton beam, 112 128 Gy s⁻¹
- **Decreased survival** for irradiation in abdominal region в 34 Gy*

Bourhis *et al*. (2019) – First human trial [25]

Vozenin *et al*. (2019) - Mini-pig and Cats [27]

Electron trials

Results: Noteworthy Clinical Trials

Proton trials

Fig. 12. FLASH-RT on cutaneous lymphoma - First human trial [25].

1c: 5 months

Challenges for Clinical Practice

- **lack of clinical data and long-term effect observations**, which prevent regulatory approval for FLASH-RT,
- **incomplete understanding of the underlying mechanisms** of the FLASH effect,
- **lack of models for** accurate **Dosimetry calculation and delivery of UHDR radiation** to patients,
- **unmapped variation of response** of UHDR radiation in different types of tissue and cancer, depending on the total absorbed Dose, *D* and characteristics of radiation (eg. density of ionisations),
- **high cost of specialised UHDR irradiation facilities**.

Technological Challenges

- UHDR beams require an **increase in the mean beam current of ~10²** , compared to CONV-RT,
- modification of *p* ⁺ systems for **sub-second SOBP-building energy changing of the beam** is quite technologically challenging,
- production of **UHDR kVp** and **High-Energy X-Rays** from interaction of *e* beams with **Bremsstrahlung conversion targets** requires **significantly larger beam current** than currently available in compact, room-temperature LINACs,
- increased requirements for clinical dosimetry systems in terms of D-dependency, spatial and time **resolution** and **dynamic range**.

[28 – 33]

[1] Limoli C, Vozenin M. (2023) *Annu. Rev. Cancer Biol.* **7**:1-21 [2] Dewey D, Boag J. (1959) *Nature* **183**(4673):1450-1451 [3] Favaudon V, *et al.* (2014) *Sci. Transl. Med.* **6**(245) [4] Titt U, *et al*. (2022) *Med. Phys.* **49**:497-509 [5] Nesteruk P K and Psoroulas S. (2021) *Appl. Sci.* **11**(2170) [6] Wei S, *et al*. (2022) *Ther. Radiol. Oncol.* **6**(16) [7] Lin Y, *et al*. (2022) *Phys. Med. Biol.* **66**(12) [8] Wu Y, *et al*. (2021) *ARO* **2**:6-14 (PHASER) [9] Maxim P G, *et al*. (2019) *Radiat. Oncol. J.* **139**:28-33. [10] Whitmore L, *et al*. (2021) *Sci. Rep.* **11(**14013) [11] Fischer J, *et al*. (2024) *Phys. J. Plus* **139**(728) [12] Whitmore L, *et al*. (2024) *Sci. Rep.* **14**(11120) [13] Ma Y, *et al*. (2024) arXiv 2405.10219. [14] Lin B, *et al*. (2022) *Front. Oncol.* **12:**995612 [15] Spitz D R, *et al*. (2019) *Radiother. Oncol.* **139**:23-27 [16] Epp E R, *et al*. (1972) *Radiat. Res.* **52**(2):324-332 [17] Venkatesulu B P, *et al*. (2019) *Sci. Rep.* **9**(1):17180 [18] Zhang Q, *et al*. (2023) *Cancers* **15**(8):2269 [19] Buonanno M, *et al.* (2019) *Radiother. Oncol.* **139**:51- 55

[20] Fouillade C, *et al*. (2020) *Clin. Cancer Res.* **26**(6):1497-1506 [21] Shi X, *et al*. (2022) *Proc. Natl. Acad. Sci. U.S.A*. **119**(43) [22] Spitz D R, *et al*. (2019) *Radiother. Oncol.* **139**:23-27 [23] Labarbe R, *et al*. (2020) *Radiother. Oncol.* **153**:303- 310 [24] Mascia A E *et al*. (2023) *JAMA Oncol.* **9**(1):62-69 [25] Bourhis J *et al*. (2019) *Radiother. Oncol.* **139**:18-22 [26] Kim K *et al*. (2024) *Int. J. Radiat. Oncol. Biol. Phys.* **119**(4):1234-1247 [27] Vozenin M C *et al*. (2019) *Clin. Cancer Res.* **25**(1):35-42 [28] Schulte R *et al*. (2023) *Appl. Sci.* **13**(8):5021 [29] Farr J *et al*. (2022) *Med. Phys.* **49**(7):4875-4911 [30] Liu F *et al*. (2023) *Med. Phys.* **50**(3):1680-1698 [31] Ashraf M R, et al. (2020) *Front. Phys.* **8**:328 [32] Farr J, et al. (2022) *Med. Phys.* **49**(7):4875-4911 [33] Weber A U (2021) *Med. Phys.* **49**:1974-1992