PANHELLENIC CONGRESS OF MEDICAL PHYSICS 4-6 OCTOBER 2024 EUGENIDES FOUNDATION

Occupational exposure during orthopaedic surgery of lower and upper extremities

Andreas Belavgenis¹, Spyros Skiadopoulos¹, Anna Karahaliou¹, Christos Dimitroukas², Vasileios Metaxas¹, Fotios O. Efthymiou¹, Panagiotis Megas³, George Panayiotakis¹

¹Department of Medical Physics, School of Medicine, University of Patras, Greece

²Department of Medical Physics, University Hospital of Patras, Greece

³Orthopaedics Clinics, University Hospital of Patras, Greece

1. Background-Aim

- The use of fluoroscopy to guide fracture reduction and facilitate anatomic localization of implant placement has become essential for surgeons seeking to reach a radiographically ideal result.
- Continued advances in digital imaging have allowed the performance of new and more complex surgeries.
- Interventional procedures can require long fluoroscopy times, cine acquisitions, and high-dose fluoroscopy modes, which can end up to high doses to patients and staff.
- The current study aims to estimate occupational exposure during fluoroscopy-guided orthopaedic surgery of the lower and upper extremities.

2. Materials & Methods (1)

- A Siemens Cios Select c-arm unit with a 23 cm diameter image intensifier was used.
- A cylindrical PMMA phantom was irradiated \rightarrow 150 mm thickness and 160 mm diameter.
- Inside the phantom, metal implants were embedded (titanium plates, titanium screws) → commonly used in orthopaedic surgery of lower and upper extremities.
- An RTI ion chamber (survey meter) was used for measuring scattered radiation (μ Sv/hr) at varying positions around the phantom.
- The angle range of measurements was 0° to 315°, with a step of 45°.

2. Materials & Methods (2)

- Ion chamber-phantom distance \rightarrow 50 cm, 100 cm and 200 cm
- Ion-chamber height \rightarrow 80 cm (gonads) and 162 cm (lens of the eye) above the floor.
- Continuous fluoroscopy of 30 p/s was performed in an undercouch geometry.

- Fluoroscopy Dose Rate Modes used → Low, Normal, High
- Two field of views values used → 16 cm (zoom 1) and 32 cm (no zoom)
- Average fluoroscopy time per intervention → 30 s
- Organ equivalent dose (gonads, eyes) for personnel positioning (distance and angle) was estimated (workload: 200 interventions/year).

3. Results (1)

Dose rate (µSv/hr) @162 cm height

Low Dose Rate /no zoom

Dose rate (µSv/hr) @162 cm height

Normal Dose Rate /no zoom

Dose rate (µSv/hr) @162 cm height

High Dose Rate /no zoom

Dose rate (µSv/hr) @162 cm height

Low Dose Rate /zoom 1

Dose rate (µSv/hr) @162 cm height

Normal Dose Rate /zoom 1

Dose rate (µSv/hr) @162 cm height

High Dose Rate / zoom 1

3. Results (2)

Occupational exposure depends on exposure settings, as well as on distance and angle positioning relative to the phantom.

3. Results (3)

Personnel Positioning	Organ Equivalent Dose (μSv/year)		
	Gonads (with shielding)	Lens of the eye (without shielding)	Lens of the eye (with shielding)
Head Orthopaedic Surgeon (Distance: 50 cm, Angle: 0°)	23,1	156,9	15,7
Assistant Orthopaedic Surgeon (Distance: 50 cm, Angle: 45°)	11,4	145,0	14,5
Resident Orthopaedic Surgeon (Distance: 100 cm, Angle: 3150)	4,5	57,4	5,7
Nurse 1 (Distance: 100 cm, Angle: 90°)	7,1	53,1	5,3
Nurse 2 (Distance: 200 cm, Angle: 135 ⁰)	1,3	15,7	1,6
C-arm Operator (Distance: 200 cm, Angle: 270°)	0,1	2,4	0,2

Assumptions: Occupancy factor T=1, scattered radiation attenuation 90% with shielding (e.g. aprons, glasses)

4. Conclusions

Recording of the **spatial distribution of scattered radiation**, in case of fluoroscopy-guided orthopaedic surgery of lower and upper extremities, **may be used as an optimization tool** for occupational exposure, in addition to radiation protective means.

Annual equivalent doses to organs, such as gonads and lens of the eye, **are low** in fluoroscopy-guided orthopaedic surgery of lower and upper extremities, provided that appropriate protective means are utilized and good practices are adopted.

5. Future Work

- Exploit anthropomorphic phantom, as well as phantoms of varying thickness values, simulating varying BMIs (Body Mass Index).
- Use of active dosimeters (e.g. TLDs).
- Investigate the effect of metal implants of varying size and material.
- Consider additional c-arm orientations (e.g. horizontal).

6. References

- Moonkum et al. Radiol. Phys. Technol. 2023;16(1):85-93. PMID: 36656425.
- Dorman et al. Eur. J. Orthop Surg Traumatol. 2023;33(7):3059-3065. PMID: 37004602.
- Dadabhoy et al. Br. J. Radiol. 2022;95(1133):20211087. PMID: 35148165.
- Koenig et al. Eur. J. Radiol. 2022 Jun;151:110270. PMID: 35367843.
- Tsai et al. Health Phys. 2022;123(3):257-264. PMID: 35613375.
- Chiang et al. Technol. Health Care. 2021;29(S1):211-219. PMID: 33682760.
- Sung et al. J. Radiat. Res. 2019;60(1):1-6. PMID: 30247685.
- Groover et al. J. Am. Acad. Orthop. Surg. Glob. Res Rev. 2019;3(6):e089. PMID: 31858073.
- Kouyoumdjian et al. Orthop. Traumatol. Surg. Res. 2018;104(5):597-602. PMID: 29969721.