

A mammographic software phantom design to test the imaging performance of digital detectors

Spyridoula Katsanevaki¹, Christos Michail ¹, Ioannis Valais ¹, Ioannis Kandarakis¹, George Fountos¹, Nektarios Kalyvas¹

¹ Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, University of West Attica, Egaleo, 12210 Athens, Greece

Background-Aim 1.

- Digital detectors could be considered the backbone of an X-Ray imaging device, since the formation of the radiographic image and hence the visualization of internal structures would be impossible without them.
- The resulting image must be of a high quality, in order to avoid hypo- or hyper-diagnosis.
- Some characteristics of the detector that affect the quality of the final image are the:
 - ✓ <u>response curve</u>: shows the translation of the incident KERMA to pixel values,
 - ✓ <u>normalized noise power spectrum (NNPS)</u>: indicates the relative noise fluctuation in the spatial frequency domain, and the
 - ✓ modulation transfer function (MTF): characterizes the ability of the detector to discern small objects.
- The aim of this study was to test the usefulness of a methodology in exploring the imaging capabilities of digital detectors.

2. Materials & Methods

✓ MATLAB software (Version 9.12), and

✓ XMuDat software (Version 1.0.1).

A Novel Method to Model Image Creation Based on Mammographic Sensors Performance Parameters: A Theoretical Study

by Nektarios Kalyvas ^{1,*} ¹^(b), Anastasia Chamogeorgaki ², Christos Michail ¹^(b), Aikaterini Skouroliakou ², Panagiotis Liaparinos ¹^(b), Ioannis Valais ¹^(b), George Fountos ¹ and Ioannis Kandarakis ¹

- ¹ Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, University of West Attica, 122 10 Athens, Greece
- ² Department of Biomedical Engineering, University of West Attica, 122 10 Athens, Greece
- * Author to whom correspondence should be addressed.

The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications

Anastasios C. Konstantinidis Ӓ 🖾 , Magdalena B. Szafraniec, Robert D. Speller, Alessandro Olivo

Department of Medical Physics and Bioengineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, UK

– Ca of a microcalcification

f = 6000000 photons/mm²

E	23 keV
t _{compressed_breast}	4.5 cm
t thick_artery	0.5 cm
t medium_artery	0.4 cm
t _{thin_artery}	0.3 cm
t_{thick_calc}	0.01 cm
t _{medium_calc}	0.0075 cm
t _{thin_calc}	0.005 cm

*Note: Findings marked with blue arrows were the same for all cases of photons per mm².

f = 4500000 photons/mm²

f = 6000000 photons/mm²

-	
E	23 keV
t _{compressed_breast}	4.5 cm
t thick_artery	0.3 cm
t _{medium_artery}	0.2 cm
t _{thin_artery}	0.1 cm
t_{thick_calc}	0.005 cm
t _{medium_calc}	0.003 cm
t _{thin_calc}	0.001 cm

*Note: Findings marked with blue arrows were the same for all cases of photons per mm².

f = 4500000 photons/mm²

f = 6000000 photons/mm²

E	28 keV
t _{compressed_breast}	4.5 cm
t thick_artery	0.5 cm
t _{medium_artery}	0.4 cm
t _{thin_artery}	0.3 cm
t_{thick_calc}	0.01 cm
t _{medium_calc}	0.0075 cm
t _{thin_calc}	0.005 cm

*Note: Findings marked with blue arrows were the same for all cases of photons per mm².

f = 4500000 photons/mm²

f = 1500000 photons/mm²

f = 6000000 photons/mm²

E	28 keV
t _{compressed_breast}	4.5 cm
t thick_artery	0.3 cm
t _{medium_artery}	0.2 cm
t _{thin_artery}	0.1 cm
t_{thick_calc}	0.005 cm
t _{medium_calc}	0.003 cm
t _{thin_calc}	0.001 cm

*Note: Findings marked with blue arrows were the same for all cases of photons per mm².

f = 4500000 photons/mm²

4. Conclusions

- As regards the imaging capabilities of the Dexela 2923 detector (for the given experimental conditions):
 - ✓ for monoenergetic X-Rays of 23 keV, an artery up to 0.3 cm thin is visible as squares with dimensions 0.15 mm and 0.3 mm, and
 - ✓ for X-Rays of the same energy, a microcalcification up to 0.005 cm thin is visible in the same shape and dimensions,
 - ✓ if an X-Ray energy of 28 keV is considered, the 0.3 cm thin artery is visible as a square with dimensions 0.3 mm, while
 - ✓ if the same X-Ray energy is considered, the 0.005 cm thin microcalcification is visible as squares with dimensions 0.15 mm and 0.3 mm.
- The methodology applied can be useful for testing a-priori the imaging performance of digital detectors.

- 1. Dance, D. R., Christofides, S., Maidment, A. D. A., McLean, I. D., & Ng, K. H. (2014). *Diagnostic Radiology* Physics: A Handbook for Teachers and Students. Marketing and Sales Unit, IAEA. ISBN: 978-92-131010-1. https://wwwpub.iaea.org/MTCD/Publications/PDF/Pub1564webNew-74666420.pdf
- 2. Hendee, W. R., & Ritenour, E. R. (2002). *Medical Imaging Physics* (4th Ed.). Wiley-Liss Inc. ISBN: 0-471-38226-4
- Kalyvas, N., Chamogeorgaki, A., Michail, C., Skouroliakou, A., Liaparinos, P., Valais, I., Fountos, G., & 3. Kandarakis, I. (2023). A Novel Method to Model Image Creation Based on Mammographic Sensors Performance Parameters: A Theoretical Study. Sensors, 23(4), 2335. <u>https://doi.org/10.3390/s23042335</u>
- 4. Konstantinidis, A. C., Szafraniec, M. B., Speller, R. D., & Olivo, A. (2012). The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 689. https://doi.org/10.1016/j.nima.2012.06.024
- 5. Katsanevaki, S. (2024). Mathematical creation of a phantom to study the effect of exposure on mammography [Diploma thesis, University of West Attica]. Athens. https://polynoe.lib.uniwa.gr/xmlui/bitstream/handle/11400/6094/Katsanevaki 18388053.pdf?sequence=1 &isAllowed=y
- 6. Nowotny, R. (1998). XMuDat (Version 1.0.1). [Computer software]. https://wwwnds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm