

The influence of iron deposition on the quantitative estimation of proton density fat fraction in patients with comorbid hepatic siderosis and steatosis: An MRI study

Dimosthenis E. Gkotsis^{1,2}, Efstathios D. Gotsis ³, Ioannis Seimenis ¹

¹National & Kapodistrian University of Athens, School of Medicine, Department of Medical Physics, Athens, Greece ²GE HealthCare, Pharmaceutical Diagnostics, Global R&D, Imaging and Digital Technology Evaluation Group ³Diagnostic Center Euromedica Encephalos, Radiology, MRI Department, Athens, Greece

1. Background - Aim

Fat infiltration and abnormal iron deposition in the liver may be concurrently present. In such cases, an accurate quantification of both liver iron and fat is needed to guide patient management and overall treatment plan^{[1][2]}.

In our **previous work**^[3] we proposed novel framework that allows а simultaneous characterization of PDFF and iron contents in a singlebreathhold, using signal intensities measured from multi-echo gradient echo images and then manually least-squares-fitted with а customized bi-exponential equation that treats water and fat protons as distinct entities, considers baseline noise, accounts for fat-induced signal oscillation.

The purpose of this retrospective study was to evaluate the influence of iron presence on the quantitative estimation of the proton density fat fraction (PDFF) of the liver with magnetic resonance imaging (MRI), which exhibits adequate sensitivity to assess both iron deposition and fat infiltration, whereas in our previous work we mainly assessed the inverse problem (e.g., the influence of fat deposition on the quantitative estimation of iron concentration.

2. Materials & Methods

5 6 7 8 9 10 11 12 13 14 15

130.HR Upits	Figure 2. Signal intensity as a		MRS Acquisi
100	function of the	MR System Characterization	Mode: STEA
	number of gradient echoes. Four trains	Scanner: 1.5T GE Signa HDxt	TR/TE = 3000
	of four echoes each, minimum TE	Software version: 26.0	NEX=16
	= 1.2 msec, maximum TE = 4.0	Coil: 32 elements	Water suppr
	msec, 16 echoes		Post-process

Table 1. Acquisition parameters for the imaging protocol; Protocols 1, 2, and 3 for our methodology; IDEAL-IQ commercial comparator.

Acquisition parameter	Protocol 1	Protocol 2	Protocol 3
Number of echoes	16	16	16
Minimum Echo Time (TE _{min}) (ms)	1.1-1.3	1.1-1.3	1.1-1.3
Maximum Echo Time (TE _{max}) (ms)	12.2-12.8	4.0-4.1	26.4-28.1
Inter-echo spacing (ms)	0.8	0.2	1.8
Field of view (cm)	36.0-42.0	36.0-42.0	36.0-42.0
Bandwidth (Hz/pixel)	976.6	976.6	976.6
Acquisition matrix (phase \times frequency)	128×128	128×128	128×256
Acquisition mode	Two-dimensional	Two-dimensional	Two-dimensional
Thickness (mm)	8	8	8
Gap (mm)	8	8	8
Number of slices	11	11	6
Repetition time (TR) (ms)	115	68	150
Flip angle (°)	20	20	20
Number of breath-holds	2	1–2	2

ition parameters

Μ

0/14 msec

ression: No

sing: SIVIC^[4]

IDEAL IQ

6
0.9
8.7
Variable
36.0-42.0
651
128×256
Three-dimensional
10
0
40
13.5
7
1

2. Materials & Methods

MRI indications for the subjects were diverse:

(a) β-thalassemia, (b) transfusion-dependent thalassemia, (c) sickle-cell disease, (d) hemochromatosis, (e) diabetes, (f) microdrepanocytic anemia, (g) drepanocytic anemia, (h) aplastic anemia, (i) spherocytic anemia, (j) cirrhosis, (k) low ferritin, (l) high ferritin, (m) sideroblastic anemia

- 80/193 with grade 0 siderosis, normal HIC (HIC \leq 1.8 mg Fe/g dwt)
- 41/193 with grade 1 siderosis, stable HIC (1.8 mg Fe/g dwt < HIC < 3.2 mg Fe/g dwt)
- 47/193 with grade 2 siderosis, mild iron overload (3.2 mg Fe/g dwt \leq HIC \leq 7.0 mg Fe/g dwt)
- 19/193 with grade 3 siderosis, moderate iron overload (7.0 mg Fe/g dwt < HIC < 15.0 mg Fe/g dwt)
- 6/193 with grade 4 siderosis, severe iron overload (HIC \geq 15.0 mg Fe/g dwt)
- 50/193 with grade 0 steatosis (FF: 0%–6.5%)
- 113/193 with grade 1 steatosis (FF: 6.6%–17.5%)
- 21/193 with grade 2 steatosis (FF: 17.6%–22.1%)
- 9/193 with grade 3 steatosis (FF: > 22.1%)

$$S_w = \frac{1}{2} \left(S_{IP} + S_{OP} \right) \qquad \text{Wa}$$

$$S_f = \frac{1}{2}(S_{IP} - S_{OP})$$
 Fat

$$PDFF = \left(\frac{S_f}{S_f + S_w}\right)$$

$$PDFF = \left(\frac{S_{IP} - S_{OP}}{2S_{IP}}\right)$$

ater signal

signal

Fat fraction

3. Results

3. Results

4. Conclusions

- Acquired imaging data suggest that the quantitative determination of **PDFF is not significantly influenced** ۲ by the extent of comorbid hepatic siderosis.
- Specifically, while fat fraction seems to influence the determination of HIC (e.g., the scatter plot outliers • occurred for subjects with large R2* values that belonged to the normal PDFF class), the determination of fat fraction is minimally influenced by the co-existence of iron.
- Acquired data (from MR spectroscopy) [albeit limited; n = 2] seem to indicate that *indeed*, the paramagnetic • effect of iron overload may in fact hinder the precise quantification of both PDFF and iron. However, in the case where simultaneously there exists high iron contents (grades 2, 3, and 4) & low PDFF (grades 0, and 1), there will be severe peak overlap due to the paramagnetic broadening that will render the PDFF estimation unreliable (this could explain the point below)
- Although the study is not powered $(1 \beta < 0.2)$ to allow detection of significant associations in the ٠ dataset, according to our study data size, and the relative populations within each group/grade, the probability (as per the hypergeometric test) of having 5 out of the 5 outliers correspond to highest grade of <u>HIC and lowest grade of PDFF at the same time</u>, is given by: $P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ and is found to be 0.0016%.

[1] Eskreis-Winkler, Sarah, et al. "IDEAL-IQ in an oncologic population: meeting the challenge of concomitant liver fat and liver iron." Cancer Imaging 18 (2018): 1-7.

[2] Reeder, Scott B., et al. "Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging." Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 54.3 (2005): 636-644.

[3] Gkotsis, D. E., et al. "Determination of the R2* relaxation rate constant for estimating hepatic iron concentration: A customized approach that considers liver fat infiltration." Physica Medica 76 (2020): 150-158.

[4] https://github.com/SIVICLab/sivic