

Comparison of ex vivo with in vivo Spectroscopic fingerprints of colorectal cancer tissues in experimental mouse model SCID

Ellas Spyratou¹, Maria Anthi Kouri^{1,2}, Maria Karnachoriti³, Spyros Orfanoudakis³, Dimitris Kalatzis¹, Athanassios G. Kontos³, Ioannis Seimenis⁴, Alexandra Tsaroucha ⁵, and Maria Lambropoulou⁶, Efstathios P. Efstathopoulos ¹

¹2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens

² Medical Physics Program, Department of Physics and Applied Physics, Kennedy College of Sciences, University of Massachusetts Lowell ³Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece;

⁴ Medical School, National and Kapodistrian University of Athens, 75 Mikras Assias Str., 11527 Athens, Greece

- ⁵ Laboratory of Bioethics, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- ⁶ Laboratory of Histology-Embryology, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece

- Raman spectroscopy (RS) has emerged as a powerful tool in medicine with high specificity, sensitivity, spatial and temporal resolution.
- Advanced portable Raman systems have been developed which allow the collection of spectral fingerprints of biostructures in vivo.
- The integration of artificial intelligence (AI) algorithms with RS has significantly enhanced its ability to accurately classify spectral data in real time.
- However, the application of RS as a clinical diagnostic tool *in vivo* remains a challenge.
- This study aims to compare *ex vivo* spectral fingerprints of colorectal cancer tissues with spectral fingerprints which were recorded *in vivo, in mice.*

- 20 immunocompromised SCID mice were used. The animals were divided in two groups. Group C, where no cancer cells were injected and Group Ca, where HCT cancer cells were injected.
- When the tumors approached the size of 100 mm³, a surgical incision was made at the site of tumor growth and Raman spectra were recorded in vivo using a portable Raman system with a fiber-optic probe.
- Then, the tumors were surgically excised and divided into two pieces: ex vivo spectra were recorded from one piece, while histological analysis was performed on the other.
- *Ex vivo* spectra were compared with *in vivo* spectra using AI algorithms trained by spectral libraries created by ex vivo colorectal spectra.

- The acquired Raman spectra were preprocessed following three steps: (1) removal of spectral regions that are dominated by parasitic signals, (2) background subtraction and (3) normalization.
- Two spectra region alternations were selected: the medium region where the frequencies was ranging from 1400–1700 cm⁻¹ and the high region where the frequencies from 2800–3100 cm^{-1.}
- An 1D-CNN model with transfer learning technique was employed to classify the Raman spectra.
- In the pretraining phase, we employed an extended • dataset from our previous work of 442 Raman spectra in human tissues, 221 from healthy and 221 from cancerous colorectal tissue samples

-score	Support		
88.1	82		
89.8	100		

	Input	Input: Output:	1000,1 1000,1		
Conv	1D	Innut		1000 1	
Linear		Output:	1000,10		
Activation ReLU		Input: 1000.1		00 10	
		Output:	1000,10		
	r	Input:	1000.10		
tch Norma	alization	Output:		1000,10	
Conv 1D		Input:	1000,10		
Line	ar	Output:	1	000,25	
Activation		Input:	100	00,25	
Re	LU	Output:	100	00,25	
Batch Normalization		Input:	1000,25		
		Output:	1000,25		
Conv 1D Linear		Input:	1	1000,25	
		Output:	1	1000,25	
Activation ReLU		Input:	100	00,25	
		Output:	1000,25		
Batch Normalization		Input:	1000,2		
		Output:	1000,25		
Average pooling 1D		Input:	1000,25		
		Output:	125,25		
	Eletter	Input:	125,25	1	
	Flatten	Output:	3125		
	Dense	Input:	3125	1	
Sigmoid		Output:	1		

Transfer learning model

Classification results for in vivo spectral data

	accuracy	precision	Recall	F1-score	support
Healthy	91.2	89.9	89	89.4	100
Cancerous		92.2	92.9	92.5	140

Confusion matrix of 1D-CNN

4. Conclusions

- The models overcome the limitations of the large data collection and demonstrate their effectiveness in *ex-vivo* and *in-vivo* settings.
- The 1D-CNN deep learning model demonstrated high percentages of accuracy for both ex vivo and in vivo spectra in distinguishing cancerous tissues from normal ones.
- However, 1D-CNN deep learning model exhibited higher accuracy, the precision and the recall for in vivo spectral data highlighting the potential of the AI model and the portable Raman system in case of a colorectal open surgery.
- Overall, all results brought RS one step closer to clinical application as an auxiliary tool for real-time biopsy and so surgical guidance.

- Kalatzis, D.; Spyratou, E.; Karnachoriti, M.; Kouri, M.A.; Orfanoudakis, S.; Koufopoulos, N.; Pouliakis, A.; Danias, N.; Seimenis, I.; Kontos, A.G.; et al. Advanced Raman Spectroscopy Based on Transfer Learning by Using a Convolutional Neural Network for Personalized Colorectal Cancer Diagnosis. Optics **2023**, 4, 310–320.
- Bergholt, M.S.; Zheng, W.; Lin, K.; Wang, J.; Xu, H.; Ren, J.L.; Ho, K.Y.; The, M.; Yeoh, K.G.; Huang, Z. Characterizing variability of in vivo Raman spectroscopic properties of different anatomical sites of normal colorectal tissue towards cancer diagnosis at colonoscopy. Anal. Chem. **2015**, 87, 960–966.
- Karnachoriti, M.; Stathopoulos, I.; Kouri, M.; Spyratou, E.; Orfanoudakis, S.; Lykidis, D.; Lambropoulou, M.; Danias, N.;Arkadopoulos, N.; Efstathopoulos, E.P.; et al. Biochemical differentiation between cancerous and normal human colorectal tissues by micro-Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 299, 122852.