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1. Background-Aim

Raman spectroscopy
● Raman spectroscopy is a vibrational spectroscopic technique that can provide information about the molecular 

composition and structure of a material by studying how inelastically scattered (Raman scattered) light interacts 
with the vibrational modes of the material’s molecules. 

● Due to its advantages, it has seen wide use in biomedical applications, from detecting and monitoring diseases to 
studying cells and analyzing drugs.

Disadvantages

● Weak signal due to small scattering cross-section

● Strong background due to fluorescence

● Complex spectra with overlapping bands

● Preprocessing required before analysis

● Raman experiments can generate large amounts of 
data

Advantages

● Non-destructive

● Minimal to no sample preparation

● Rapid

● Minimal interference from water (suitable for wet 
tissues)

● Works with solids, liquids, and gases

Our work

We present an efficient, versatile, and intuitive workflow for preprocessing and analyzing Raman data using the free 
and open-source PyFasma package. We developed the package with the goal of providing a high level programming 
interface that offers spectroscopists flexibility and ease of use, without requiring expert Python knowledge.



2. Materials & Methods

PyFasma
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Package overview
● PyFasma is based on Python 3.12 and depends on several Python packages: LMFIT, Matplotlib, NumPy, pandas, 

pybaselines, SciPy, scikit-learn, Seaborn, spc.

● The package is created as a one-stop shop solution for conducting the whole analysis of Raman data using robust 
and trusted algorithms: from file manipulation and preprocessing of spectra to multivariate statistical analysis and 
band deconvolution.

● Central data structure is the pandas DataFrame, which PyFasma extends, and was chosen for its flexibility and data 
manipulation capabilities.

● PyFasma’s structure is presented below:



2. Materials & Methods

Samples for demonstration
● To demonstrate the workflow using PyFasma, we conducted a comparative analysis using 82 Raman spectra 

obtained from the tibias of healthy rabbits and 40 spectra from rabbits with induced osteoporosis (122 Raman 
spectra in total).

● Spectra were collected using a BWTEK i-Raman Plus spectrometer, operating at 785 nm, with a power output of  
200 mW at the probe and signal collection time of 6 s.

● The unprocessed spectra for the two groups are presented below.



3. Results

Preprocessing
● After importing the dffuncs module (from pyfasma import dffuncs), we preprocess the spectra (columns) in a 

DataFrame df as follows: (1) initially crop the spectra to a wider region of interest (100-2400 cm-1), (2) remove 
spikes and smooth using a Savitzky-Golay filter, (3) baseline correct using the SNIP algorithm, (4) normalize to the 
phosphate peak intensity (max between 950-970 cm-1), and finally crop to the fingerprint region (400-1800 cm-1).
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3. Results

Principal Components Analysis (PCA)
● PCA is an unsupervised multivariate statistical analysis technique that is widely used in Raman analysis both for 

dimensionality reduction and for uncovering helpful insights about the relationship between variables.

● The scree plot shows that 
the first three PCs explain 
most (86%) of the observed 
variance.

● By examining the scores 
plots, good separation is 
observed along PC2 and 
PC3. The respective 
loadings plots indicate the 
variables that contribute 
more to the variance.

● To perform PCA with PyFasma, after importing 
the modeling module
(import pyfasma.modeling as mdl), one has 
to just assign the hue list that defines the class 
that each sample belongs to and initialize the 
PCA class.



3. Results

Partial Least Squares Discriminant analysis (PLS-DA) (1)
● PLS-DA is a supervised multivariate statistical analysis technique that is used both for dimensionality reduction 

and for classification. It has emerged as an adaptation of PLS regression that can handle categorical response 
variables.

● As a supervised technique, the data must be split to train and test datasets prior to creating a model. We used the 
same classes list we assigned in PCA as the response variables and split the data to a 70/30 ratio in a stratified 
fashion using scikit-learn’s model_selection.train_test_split method.

● Before creating a PLS-DA model, the optimal 
number of components must be determined 
so that the model works without been over- 
or under-fitted. This can be achieved with 
performing cross-validation by setting 
cross_val=True when initializing the PLS 
class of the modeling module. We opted for 
repeated (n_repeats=10) stratified 
(stratify=True) cross-validation with 5 
KFolds (n_splits=5).

● Based on the resulting cross-validation 
metrics plot, it can be determined that the 
optimal number of components for the PLS-
DA model is 2. 



3. Results

Partial Least Squares Discriminant analysis (PLS-DA) (2)
● After determining the number of components for the model, we can create it:

● The available visualizations present 
good discrimination between the 
two classes and the metrics indicate 
good prediction capabilities for the 
model.



4. Conclusions

● We presented the workflow of preprocessing and analyzing Raman spectra with PyFasma, a free 
and open-source Python 3 package.

● We showed the effectiveness of creating preprocessing pipelines with an intuitive and repeatable 
way.

● We also created, evaluated, and visualized unsupervised (PCA) and supervised (PLS-DA) 
multivariate models using only a few lines of code.

● Healthy and osteoporotic bones were well-separated in PCA, which is indicative of significant 
differences between the two classes.

● In PLS-DA, cross-validation was used for the determination of the optimal number of components 
for the predictive model. PLS-DA also provided good separation between the two bone classes 
and the evaluation metrics on the test data indicate good prediction capabilities for the model.
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