
A versatile and intuitive workflow for the analysis of
Raman spectra using Python
Eleftherios Pavlou¹, Nikolaos Kourkoumelis¹

¹Laboratory of Medical Physics, School of Medicine, University of Ioannina

1. Background-Aim

Raman spectroscopy
● Raman spectroscopy is a vibrational spectroscopic technique that can provide information about the molecular

composition and structure of a material by studying how inelastically scattered (Raman scattered) light interacts
with the vibrational modes of the material’s molecules.

● Due to its advantages, it has seen wide use in biomedical applications, from detecting and monitoring diseases to
studying cells and analyzing drugs.

Disadvantages

● Weak signal due to small scattering cross-section

● Strong background due to fluorescence

● Complex spectra with overlapping bands

● Preprocessing required before analysis

● Raman experiments can generate large amounts of
data

Advantages

● Non-destructive

● Minimal to no sample preparation

● Rapid

● Minimal interference from water (suitable for wet
tissues)

● Works with solids, liquids, and gases

Our work

We present an efficient, versatile, and intuitive workflow for preprocessing and analyzing Raman data using the free
and open-source PyFasma package. We developed the package with the goal of providing a high level programming
interface that offers spectroscopists flexibility and ease of use, without requiring expert Python knowledge.

2. Materials & Methods

PyFasma

fileio.py

plotting.py

modeling.py

numpyfuncs.py analysis.pyhelpers.py

dffuncs.py

plotting.py

Functions for file
operations

Classes for
deconvoluting Raman

bands

Functions for plotting
data

Classes for analyzing
spectra using PCA and

PLS-DA

Functions for operating
on spectra as DataFrame

columns

Helper functions Functions for processing
spectra as arrays – base for

dffuncs.py

Package overview
● PyFasma is based on Python 3.12 and depends on several Python packages: LMFIT, Matplotlib, NumPy, pandas,

pybaselines, SciPy, scikit-learn, Seaborn, spc.

● The package is created as a one-stop shop solution for conducting the whole analysis of Raman data using robust
and trusted algorithms: from file manipulation and preprocessing of spectra to multivariate statistical analysis and
band deconvolution.

● Central data structure is the pandas DataFrame, which PyFasma extends, and was chosen for its flexibility and data
manipulation capabilities.

● PyFasma’s structure is presented below:

2. Materials & Methods

Samples for demonstration
● To demonstrate the workflow using PyFasma, we conducted a comparative analysis using 82 Raman spectra

obtained from the tibias of healthy rabbits and 40 spectra from rabbits with induced osteoporosis (122 Raman
spectra in total).

● Spectra were collected using a BWTEK i-Raman Plus spectrometer, operating at 785 nm, with a power output of
200 mW at the probe and signal collection time of 6 s.

● The unprocessed spectra for the two groups are presented below.

3. Results

Preprocessing
● After importing the dffuncs module (from pyfasma import dffuncs), we preprocess the spectra (columns) in a

DataFrame df as follows: (1) initially crop the spectra to a wider region of interest (100-2400 cm-1), (2) remove
spikes and smooth using a Savitzky-Golay filter, (3) baseline correct using the SNIP algorithm, (4) normalize to the
phosphate peak intensity (max between 950-970 cm-1), and finally crop to the fingerprint region (400-1800 cm-1).

(1)

(4)

(2)

(3)

3. Results

Principal Components Analysis (PCA)
● PCA is an unsupervised multivariate statistical analysis technique that is widely used in Raman analysis both for

dimensionality reduction and for uncovering helpful insights about the relationship between variables.

● The scree plot shows that
the first three PCs explain
most (86%) of the observed
variance.

● By examining the scores
plots, good separation is
observed along PC2 and
PC3. The respective
loadings plots indicate the
variables that contribute
more to the variance.

● To perform PCA with PyFasma, after importing
the modeling module
(import pyfasma.modeling as mdl), one has
to just assign the hue list that defines the class
that each sample belongs to and initialize the
PCA class.

3. Results

Partial Least Squares Discriminant analysis (PLS-DA) (1)
● PLS-DA is a supervised multivariate statistical analysis technique that is used both for dimensionality reduction

and for classification. It has emerged as an adaptation of PLS regression that can handle categorical response
variables.

● As a supervised technique, the data must be split to train and test datasets prior to creating a model. We used the
same classes list we assigned in PCA as the response variables and split the data to a 70/30 ratio in a stratified
fashion using scikit-learn’s model_selection.train_test_split method.

● Before creating a PLS-DA model, the optimal
number of components must be determined
so that the model works without been over-
or under-fitted. This can be achieved with
performing cross-validation by setting
cross_val=True when initializing the PLS
class of the modeling module. We opted for
repeated (n_repeats=10) stratified
(stratify=True) cross-validation with 5
KFolds (n_splits=5).

● Based on the resulting cross-validation
metrics plot, it can be determined that the
optimal number of components for the PLS-
DA model is 2.

3. Results

Partial Least Squares Discriminant analysis (PLS-DA) (2)
● After determining the number of components for the model, we can create it:

● The available visualizations present
good discrimination between the
two classes and the metrics indicate
good prediction capabilities for the
model.

4. Conclusions

● We presented the workflow of preprocessing and analyzing Raman spectra with PyFasma, a free
and open-source Python 3 package.

● We showed the effectiveness of creating preprocessing pipelines with an intuitive and repeatable
way.

● We also created, evaluated, and visualized unsupervised (PCA) and supervised (PLS-DA)
multivariate models using only a few lines of code.

● Healthy and osteoporotic bones were well-separated in PCA, which is indicative of significant
differences between the two classes.

● In PLS-DA, cross-validation was used for the determination of the optimal number of components
for the predictive model. PLS-DA also provided good separation between the two bone classes
and the evaluation metrics on the test data indicate good prediction capabilities for the model.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

