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1. Background-Aim

In the realm of deep learning, semantic segmentation is the primary method of identification of regions of interest
within medical images. U-Net and DeeplLabV3+ are the most popular architectures used in addressing the multifaceted
demands of medical image segmentation tasks. However, there is a great number of proposed variants of these
architectures, tailored to address specific challenges and optimize performance.

This study aims to evaluate the performance of U-Net and DeeplLabV3+ variants in diverse medical segmentation tasks
and suggest an efficient and computational effective architecture that could serve as the foundational framework for

future research endeavors.

The optimized structure takes advantage of transfer learning and its capabilities, in order to be generalized for different
medical image segmentation tasks. In particular, the performance of these deep learning network architectures on
three different segmentation tasks of increasing difficulty and graded similarity from ImageNet is examined.
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2. Materials & Methods
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2. Materials & Methods

Data Quality Inspection

" -
A & -
0. ]
: {
g 1 B
" ]
y L
\
.

F

ISIC 2018
Training | Test
Starting Data 2594 1000
ISIC 2018
Training | Test
Final Data 2480 1000
Shenzhen Hospital CXR Set | Montgomery CXR Set
Training Test
Final Data 566 138

Masses in CBIS-DDSM

Training

Test

Final Data 1301

377

Hyper-parameters

ADAM (Adaptive Moment Estimation)

Learning Rate

Lr = 0.001

Batch Size Batch Size = 32
Epochs Epochs =50

Early Stopping

Early Stopping = True,
min_delta = 0.001,
patience =5

Loss Functions

Binary Cross-Entropy

Log-Cosh Dice Loss




3. Results
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3. Results
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3. Results
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3. Results

The success of the model
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4. Conclusions

+* The development of user-oriented and computationally efficient models makes semantic segmentation
accessible and practical, offering advanced image analysis capabilities in a great number of clinical tasks

+* The DeeplLabV3+ architecture using transfer learning of pre-trained neural network, ResNet50, exhibited
exceptional results in three different medical image segmentation tasks of graded similarity from ImageNet,
setting it up as a fundamental baseline framework in future studies

*** The choice of the appropriate loss function significantly affects the model training and is adapted to the needs
of the problem at hand

¢ The quality of the data is crucial to further improve the performance of the model. Hence, in medical domain
it is preferable to implement data-driven rather than model-driven improvements
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