

Setting up an efficient base deep network architecture for medical image segmentation

Prokopiou Ioannis¹, Spyridonos Panagiota²

¹Department of Medical Physics, University of Ioannina, Ioannina, Greece

²Department of Medical Physics, University of Ioannina, Ioannina, Greece

In the realm of deep learning, semantic segmentation is the primary method of identification of regions of interest within medical images. U-Net and DeepLabV3+ are the most popular architectures used in addressing the multifaceted demands of medical image segmentation tasks. However, there is a great number of proposed variants of these architectures, tailored to address specific challenges and optimize performance.

This study aims to evaluate the performance of U-Net and DeepLabV3+ variants in diverse medical segmentation tasks and suggest an efficient and computational effective architecture that could serve as the foundational framework for future research endeavors.

The optimized structure takes advantage of transfer learning and its capabilities, in order to be generalized for different medical image segmentation tasks. In particular, the performance of these deep learning network architectures on three different segmentation tasks of increasing difficulty and graded similarity from ImageNet is examined.

2. Materials & Methods

Data Quality Inspection

		ISIC 2	018
\bigcirc		Training	Test
	Starting Data	2594	1000
			10

	151C 2018		
	Training	Test	
Final Data	2480	1000	

	Shenzhen Hospital CXR Set	Montgomery CXR Set
	Training	Test
Final Data	566	138

	Masses in CBIS-DDSM		
	Training	Test	
Final Data	1301	377	

Hyper-parameters

ADAM (Adaptive Mo			
Learning Rate	Lr = 0.0		
Batch Size	Batch S		
<u>Epochs</u>	Epochs		
Early Stopping	Early St min_de patienc		

Loss Functions

Log-Cosh Dice Loss

ment Estimation)

001

Size = 32

= 50

topping = True, elta = 0.001, ce = 5

Dice Coeffient					Dice Coefficient
224 x 224 - Binary Cross-Entropy				Loss Fu	
	VGG19	ResNet50	DenseNet121		Binary Cross-Entropy
U-Net	0.717	0.878	0.848	DeepLabV3+_RN50	0.860
DeepLabV3+	0. 815	0.860	0.853	U-Net_RN50	0.878

3. Results

ISIC 2018

ISIC 2018					
	Dice Coefficient				
Image	U-Net_RN50	DeepLabV3+_RN50			
ISIC_0021036.jpg	0.723	0.809			
ISIC_0021583.jpg	0.618	0.734			
ISIC_0022736.jpg	0.584	0.873			
ISIC_0036235.jpg	0.806	0.827			

Masses in CBIS-DDSM				Masses in CBIS	5 - DD	SM		
		224 x 224	– Bin	ary Cross-Entrop	y	224 x 224 -	Log-Cosh Die	ce Los
		U-Net_RN	150	DeepLabV3+_R	N50	U-Net_RN50	DeepLabV	/3+_R
	Dice Coefficient	0.748		0.750		0.756	0.7	89
Γ	Masses in CBI	S-DDSM				Original Image	Ground Truth Mask	U-N
		Dice	Coeff	icient		Service States		
Image		U-Net_RN50	Deep	LabV3+_RN50		1. 19 A.		
Mass-Test_P_00066_LEFT_0	CC_1.jpg	0.533		0.855		S CARLES		

0.841

0.659

0.856

0.766

0.199

0.450

Mass-Test_P_00875_RIGHT_CC_1.jpg

Mass-Test_P_01719_RIGHT_MLO_1.jpg

Mass-Test_P_00813_RIGHT_MLO_1.jpg

Chest X-rays		Montgomery County X-ray Set			
		224 x 224 - Bin	224 x 224 - Log-C		
		U-Net_RN50	DeepLabV3+_RN50	U-Net_RN50	Deo
	Dice Coefficient	0.9540	0.9544	0.905	
	·		·	Creased Truth	<u> </u>

Montgomery County X-ray Set						
	Dice Coefficient					
Image U-Net_RN50 DeepLabV3+_RN						
MCUCXR_0077_0.png	0.945	0.901				
MCUCXR_0150_1.png	0.877	0.903				
MCUCXR_0266_1.png	0.947	0.955				
MCUCXR_0338_1.png	0.926	0.954				

3. Results

- The development of user-oriented and computationally efficient models makes semantic segmentation accessible and practical, offering advanced image analysis capabilities in a great number of clinical tasks
- The DeepLabV3+ architecture using transfer learning of pre-trained neural network, ResNet50, exhibited exceptional results in three different medical image segmentation tasks of graded similarity from ImageNet, setting it up as a fundamental baseline framework in future studies
- The choice of the appropriate loss function significantly affects the model training and is adapted to the needs of the problem at hand
- The quality of the data is crucial to further improve the performance of the model. Hence, in medical domain it is preferable to implement data-driven rather than model-driven improvements