

Brain tumor detection and classification using Deep Learning

Athina Tsagkalidou^{1,2}, Michael Filippakis ³

¹Department of Bioinformatics, National and Kapodistrian University of Athens, Greece

²Department of Oncology, Medical School, University of Crete, Greece

³Department of Digital Systems, University of Piraeus, Greece

1. Background-Aim

Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images.

- Both ML and DL techniques are popular in analyzing MRI images.
- Application of automated classification techniques using ML and AI \rightarrow higher accuracy ٠
- The role of **AI tools** in the diagnosis of various types of oncology is steadily increasing.
- The manual diagnosis by doctors is slow and subject to inter-observer variations, especially with the ٠ increasing number of new cases reported on a daily basis.
 - Detection & Segmentation methods for brain tumors was developed using brain MRI images as input to DL networks.
 - Automatic detection and localization of brain tumors:
 - Task 1: Classification (tumorous/notumorous)
 - Task 2: Segmentation (exact tumor area)

Dataset Br35H::Brain Tumor Detection 2020

- yes: 1500 tumorous brain MRI
- no: 1500 non tumorous brain MRI
- pred: 60 brain MRI without label
- Training set, validation set, testing set
- Br35H-Mask-RCNN

Method

- **Binary classification task** →two class labels (tumor not detected/tumor detected)
- Thresholding segmentation task → compare all pixels of a gray image with a specified threshold

>two class labels or detected) n task → compare /ith a specified

.

Task 1 : Classification

•

1st approach:

CNN based model

(Chattopadhyay, Arkapravo, and Mausumi Maitra. "MRI-based Brain Tumor Image Detection Using CNN based Deep Learning · Accuracy 98,4% Method." Neuroscience Informatics (2022): 100060.)

2nd approach:

- Transfer the knowledge of a pretrained ResNet50 model

Accuracy 95,6% •

Task 2 : precise localization of brain tumors in MRI images

- Automated segmentation \rightarrow ML and DL techniques \rightarrow automatically identify and delineate the regions of interest.
- MRI image segmentation aims to **accurately** identify and separate different anatomical structures or pathologies within the scanned image.
- **Image segmentation** \rightarrow image segments
- Semantic image segmentation \rightarrow label each pixel with a corresponding class (tumor/no tumor)

Convolutional neural network (CNN) and U-Net have shown great success in brain tumor MRI image segmentation by learning hierarchical features and capturing complex patterns

ResNet50: improved accuracy and performance

Task 2 : precise localization of brain tumors in MRI images

•

•

•

1st approach:

U-Net Architecture

Results:

- the testing loss is 0.35 •
- the testing accuracy is 94.14% •

Training and Validation metrics

2nd approach:

U-Net Architecture with Resblocks

Results:

the testing loss is 0.11

The testing accuracy is 95.15%

- Column 1: original image (input MRI)
- Column 2: mask from the dataset
- Column 3: output mask
- Column 4 & 5: the two previous masks of the second and third columns respectively applied on the original image

4. User Interface App

Welcome to Brain Tumor Detection system application

Choose an input file for the brain tumor detection system:		
Ŧ	Drag and drop file here	Browse files
Choose t	he system parts to run	
Brain tumor classification:		

Yes

Brain tumor segmentation:

Yes

Submit

Based on the models :

ResNet50 and U-Net Architecture with Resblocks

Brain tumor classification results

Predicted probability for the input image is: 0.978

• The rounded predicted probability for the input image is: 1

The predicted label for the input image is: yes

Input image

Brain tumor has been detected in the input image

Brain tumor segmentation results

Segmentation results

Input image

Segmented image

•

•

•

•

- Deep Learning is the state-of-the-art Machine Learning approach.
- Deep Learning in pattern recognition can bring revolutionary changes in health care
- The tools provided by AI improve the clinical practice by **assisting clinicians**.
- Al provides tools to aid medical practice that are more accurate than classical methods as they do not set strict and rigid rules but adapt to the data we provide.
- Machine Learning and Deep Learning is expected to become an **essential technology for medical specialists**.

6. References

- Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of artificial intelligence in 1. healthcare: a structured literature review. BMC medical informatics and decision making, 21, 1-23.
- Chattopadhyay, A., & Maitra, M. (2022). MRI-based brain tumour image detection using CNN based deep learning 2. method. Neuroscience informatics, 2(4), 100060.
- Hamada A. Br35H Brain Tumor Detection 2020 Dataset. 2020. [(accessed on 28 January 2022)]. Available 3. online: https://www.kaggle.com/ahmedhamada0/brain-tumor-detection
- Bishop, C. M. (1994). Neural networks and their applications. Review of scientific instruments, 65(6), 1803-1832. 4.
- Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., ... & He, Q. (2020). A comprehensive survey on transfer learning. 5. Proceedings of the IEEE, 109(1), 43-76.
- Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2001). Image segmentation using deep 6. learning: a survey.(2020). arXiv preprint arXiv:2001.05566
- Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In 7. Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (pp. 234-241). Springer International Publishing.