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1. Background-Aim

Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images.

Both ML and DL techniques are popular in analyzing MRI images.

Application of automated classification techniques using ML and Al = higher accuracy

The role of Al tools in the diagnosis of various types of oncology is steadily increasing.

The manual diagnosis by doctors is slow and subject to inter-observer variations, especially with the
increasing number of new cases reported on a daily basis .

Detection & Segmentation methods for brain tumors was developed using brain MRl images as input to
DL networks.
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2. Materials & Methods

set

Br35H

Dataset

2020

* Br35H-Mask-RCNN

Brain Tumor Detection2020

Br35H::Brain Tumor Detection

e ves: 1500 tumorous brain MRI
* no: 1500 non tumorous brain MRI
 pred: 60 brain MRI without label

* Training set, validation set, testing

o

Method

Binary classification task —->two class labels
(tumor not detected/tumor detected)

Thresholding segmentation task - compare
all pixels of a gray image with a specified

threshold




3. Results

Task 1 : Classification

1st approach: 2nd approach:

CNN based model Transfer the knowledge of a pretrained
(Chattopadhyay, Arkapravo, and Mausumi ResNet50 model

Maitra. "MRI-based Brain Tumor Image

Detection Using CNN based Deep Learning - Accuracy 98,4%

Method." Neuroscience Informatics (2022):

Accuracy 95,6%
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3. Results

Task 2 : precise localization of brain tumors in MRI images

Automated segmentation - ML and DL
techniques - automatically identify and
delineate the regions of interest.

MRI image segmentation aims to accurately
identify and separate different anatomical
structures or pathologies within the scanned
Image.

Image segmentation - image segments

Semantic image segmentation - label each
pixel with a corresponding class (tumor/no

tumor)
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Convolutional neural network (CNN) and U-Net
have shown great success in brain tumor MRI
image segmentation by learning hierarchical
features and capturing complex patterns

ResNet50: improved accuracy and performance
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3. Results

Task 2 : precise localization of brain tumors in MRI images

1st approach: 2nd approach:

U-Net Architecture . U-Net Architecture with Resblocks

Results: Results:

the testing loss is 0.35 . thetesting loss is 0.11
the testing accuracy is 94.14% . The testing accuracy is 95.15%
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3. Results

Column 1: original image (input MRI)
Column 2: mask from the dataset

Column 3: output mask

Column 4 & 5: the two previous masks of the
second and third columns respectively applied
on the original image
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4. User Interface App

Welcome to Brain Tumor Detection
system application

Choose an input file for the brain tumor detection system:

Browse files

@) Drag and drop file here
Limit 200MB per file « JPEG, JPG, PNG

Choose the system parts to run

Brain tumor classification:

Yes

Brain tumor segmentation:

Yes

Submit

Based on the models :

ResNet50 and U-Net Architecture with Resblocks

. Brain tumor classification results

Predicted probability for the input image is: 0.978
~ The rounded predicted probability for the input image is: 1

The predicted label for the input image is: yes

Brain tumor segmentation results

Segmentation results

Input image

Brain tumor has been detected in the input image

Inputimage Segmented image




5. Conclusion

Deep Learning is the state-of-the-art Machine Learning
approach.

Deep Learning in pattern recognition can bring
revolutionary changes in health care

Al for

The tools provided by Al improve the clinical practice by _
assisting clinicians. v Healthcare A

Al provides tools to aid medical practice that are more
accurate than classical methods as they do not set strict
and rigid rules but adapt to the data we provide.

Machine Learning and Deep Learning is expected to
become an essential technology for medical specialists.
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