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1. Background-Aim

Background:

* Breast cancer is a major global health concern, with early detection and
diagnosis being crucial for effective treatment.

« Mammography is a reliable diagnostic tool, but the distinction between
malignant and benign areas remains challenging due to the complexity of
breast tissue.

e Texture analysis is essential for capturing subtle variations in tissue
heterogeneity.

Aim:

e A comparative evaluation of handcrafted texture features and deep
features, in the discrimination between benign and malignant breast
masses.
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2. Materials

The dataset used is the CBIS-DDSM! from the Cancer
Imaging Archive (TCIA), an open-access archive of
medical images for cancer research.

CBIS-DDSM benign malignant

training set 681 637

testing set 231 147

1CBIS-DDSM | Curated Breast
Imaging Subset of Digital
Database for Screening
Mammography




2. Methods

Texture feature extraction
workflow
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2SVM is a powerful and versatile
machine learning algorithm,
particularly well-suited for
tackling high-dimensional
problems.




2. Methods

Handcrafted texture features :

Feature extraction




2. Methods

Convolutional Neural Network (CNN)
workflow
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2. Methods
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3. Results

Model 2.1 (Linear SVM)
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4. Conclusions

Deep features lead to more accurate classification compared to texture-based features, while the extraction of texture
features is significantly more time-consuming. Deep features can adapt to the complexity of breast tissue textures,
providing superior performance in mass classification. Future studies should concentrate on the effective use of feature
encoding, combining different networks, layers and features.
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