PANHELLENIC CONGRESS OF MEDICAL PHYSICS 4-6 OCTOBER 2024 EUGENIDES FOUNDATION

Evaluation of Generative Adversarial Networks for DataAugmentation in Melanoma Identification

Aglaia Kitsou¹, George Livanos¹, George Sakellaropoulos¹

¹Department of Medical Physics, School of Medicine, University of Patras, GR-265 04 Patras, Greece

1. Background-Aim

Melanoma:

- Skin cancer
- Increased mortality rates (up to 73%)
- Limited Dermoscopic image: Difficulty in training AI models

ISIC Archive:

Melanoma Dataset: 7,349 images

Nevus Dataset: 32,697 images

Class Imbalance

Purpose of thesis:

Melanoma Augmentation by implementing a Deep Convolutional Generative Adversarial Network (DCGAN)

2. Materials & Methods

Training of a Deep Convolutional GAN (DCGAN)

2. Materials & Methods

Training of Classifier Models

Evaluation of Synthetic Melanoma Images Using KID Metric

- KID: Quantitative measure of how similar the generated images are to real images
- KID = 0.0653
 Indicates high similarity between generated melanoma images and real images

Evaluation of the Classifiers' Performance

	Discriminator-Based Classifier			CNN Classifier		
	AUC	Binary ACC	Recall	AUC	Binary ACC	Recall
All data	91,03%	86,89%	69,16%	91,10%	87,27%	53,66%
ISIC	90,63%	87,37%	55,30%	88,68%	85,67%	49,32%

Performance of Discriminator-based Classifier

- High AUC & ACC in both datasets: Strong ability of classifier to differentiate the classes
- Higher **Recall** when it trains with the dataset that contains the **synthetic images**

Performance of CNN Classifier

- High AUC & ACC in both dataset: Effective model in distinguishing between melanoma and nevus
- Significant drop in Recall in both datasets: Model is less sensitive in detecting true positive melanoma cases compared to the discriminator-based classifier

Effectiveness of DCGANs

- Realistic Image Generation from DCGAN model
 - Addressing Data Scarcity

Enhanced Classifier Performance

- Synthetic images improve training and performance of classification models
 - Higher Recall: Pre-trained Discriminator of the DCGAN model used as classifier

5. References

- Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers. 2022;14(19):4652. doi:10.3390/cancers14194652
- About. ISIC. Accessed July 17, 2024. https://www.isic-archive.com/mission
- Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016.
- Venu SK. Evaluation of Deep Convolutional Generative Adversarial Networks for data augmentation of chest X-ray images. Future Internet. 2020;13(1):8. doi:10.3390/fi13010008
- Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Networks. Published online June 10, 2014. Accessed July 31, 2024. http://arxiv.org/abs/1406.2661
- Walwadkar D. Generative Adversarial Network (GAN) SimpleGAN, DCGAN, WGAN, ProGAN. Medium. December 14, 2022. Accessed July 31, 2024. https://medium.com/@dnyaneshwalwadkar/generative-adversarial-network-gan-simplegan-dcgan-wgan-progan-c92389a3c454