

Synthesis, properties, and interaction with tween 80 in self-assembled beta-lactoglobulin/chondroitin sulfate nanoparticles

Ioannis Pispas^{1, 2, *}, Nikolaos Spiliopoulos³, and Aristeidis Papagiannopoulos¹

¹Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.

²Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.

³Department of Physics, University of Patras, 26504 Patras, Greece.

*Presenting author's e-mail: johnpispas@gmail.com

Background

Beta-Lactoglobulin (β-LG)

- Globular, lipocalin protein found in most mammal milks, except for human breast milk (lack of β-LG homologue). ۲
- Capable of binding various hydrophobic molecules and ligands (antioxidants and vitamins) and increase their ۲ transport in biological systems.
- β-LG-based NPs produced as carriers of caffeine and as stabilizers and enhancers in insulin nanodelivery. ۲

Chondroitin Sulfate (CS)

- Negatively charged polysaccharide of the family of sulfated glycosaminoglycans (GAGs). ۲
- Important dietary supplement for therapy of osteoarthritis. ۲
- Acquired from bovine, porcine or marine cartilage, where it acts as a structural component forming the side chains ۲ of aggrecan.

Tween 80 (T80)

- Non-ionic surfactant and emulsifier, used in vitamin D delivery, anticancer drug delivery and in skincare formulations.
- Cheap compound with low toxicity levels. ٠
- Ability of protein stabilization against thermal aggregation, denaturation and surface adsorption. ۲

Study aim

- Electrostatic complexation of β -LG and CS in acidic conditions to prepare well-defined biocompatible NPs. •
- Stabilization of NPs by thermal treatment for aggregation of β -LG inside the complexes. ۲
- Test in solutions of added salt and biological fluids for potential biocompatible delivery nanosystems. ۲

Materials and sample preparation

- Bovine β-LG and Tween 80 were purchased from Sigma-Aldrich, while porcine CS in the form of sodium salt (Na-CS) was purchased from Bioberica. All materials used without additional treatment.
- Stock solutions were prepared under constant stirring at concentrations of 1 mg/mL at pH 4 and kept at 4 °C for 20-۲ 24h to reach equilibrium.
- Solutions of β-LG/CS/T80 NPs (total volume at 1 mL) were prepared by mixing-stock solutions of β-LG, CS, T80 and ٠ water, while preserving the final concentration of β -LG at 0.1 mg/mL (unless stated differently).
- Order of addition: Water, CS, β -LG and, T80. ۲
- Solutions of NaOH and HCI (1M each) were used to alter the pH of 4 to neutral (pH=7) or to strongly acidic (pH=1.5). ۲
- Thermal treatment (TT) was performed according to thermal treatment protocol of 85 °C for 50 minutes at pH 4. ۲ Samples were thermally treated after their formation was achieved at pH 4.
- For transmission electron microscopy (TEM) and circular dichroism (CD) experiments, the samples were prepared at ۲ a β -LG concentration of 0.2 mg/mL to obtain a satisfactory signal.

Experimental techniques

- Static and Dynamic Light Scattering (SLS and DLS): Light scattering measurements were performed by employing a \bullet classic ALV system (ALV GmbH) executing an analysis via an ALV-CG-3 goniometer and an ALV-5000/EPP multi-tau digital correlator with a He-Ne laser (λ =632.8 nm).
- Fourier-Transform Infrared Spectroscopy (FTIR): Measurements were performed using a Bruker Equinox 55 device ۲ with an attenuated total reflectance (ATR) diamond accessory.
- Transmission Electron Microscopy (TEM): TEM experiments were conducted utilizing a JEOL JEM-2100 device at a ۲ voltage of 200 keV, while the TEM images were obtained using an Erlangshen CCD camera.
- **Circular Dichroism (CD):** A CD Jasco J-815 model spectrometer was used to perform CD measurements by placing the sample solutions into quartz cells of 1 mm thickness. The quartz cells were carefully cleaned using Milli-Q water, ethanol and nitrogen gas.

Morphology and structure of β -LG/CS and β -LG/CS/T80 NPs before and after TT

after TT at pH 7.

Figure 3. Deconvolution of the signal in the amide I region at pH 4 from: (a) pure β -LG before TT; (b) β -LG/CS NPs after TT; (c) β-LG/CS/T80 NPs after TT. Experimental (solid lines) and fitting profiles (short dash lines) of molar ellipticity of (d) pure β -LG, (e) β -LG/CS NPs and (f) β -LG/CS/T80 NPs before (black) and after (red) TT at pH 4 and after TT (blue) at pH 7.

Table 1. Secondary structure of β -LG determined from ATR-FTIR data. β -LG at 0.1 mg/mL. In β -LG/CS/T80 complexes, T80 at 50% T80/ β -LG mass ratio and at pH 4 (r_m = 0.4) (error in estimation of percentages is approximately \pm 1.0%).

Assignment	B-Sheet/B-Turn	A-Helix	Random Coil	Intramolecular β-Sheet
Wavenumbers (cm ⁻¹)	1685–1663	1655–1650	1648–1644	1632–1621
Pure β-LG	21.3%	19.6%	16.2%	17.8%
β-LG/CS (NoTT)	15.4%	22.0%	13.9%	20.3%
β -LG/CS (TT)	15.1%	21.8%	13.3%	25.0%
β-LG/CS/T80 (NoTT)	18.5%	22.2%	14.1%	19.7%
β-LG/CS/T80 (TT)	14.8%	23.0%	7.1%	27.3%

Table 2. Secondary structure estimated by CD. Content of pure β -LG and β -LG in β -LG/CS and β -LG/CS/T80 NPs before and after TT at pH 4 and after TT at pH 7 (error in estimation of percentages is approximately \pm 1.0%).

Pure β-LG	A-Helix	B-Sheet	B-Turn	Irregular/Others
Untreated/pH 4	14.6%	35.0%	10.3%	40.1%
Treated/pH 4	13.1%	35.4%	10.9%	40.7%
Treated/pH 7	13.2%	22.3%	14.6%	49.8%
β-LG/CS NPs	α-helix	β-sheet	β-turn	Irregular/Others
Untreated/pH 4	3.1%	36.4%	15.1%	45.3%
Treated/pH 4	9.8%	30.0%	10.7%	49.6%
Treated/pH 7	9.2%	28.0%	17.5%	45.3%
β-LG/CS/T80 NPs	α-helix	β-sheet	β -turn	Irregular/Others
Untreated/pH 4	5.9%	37.4%	13.5%	43.2%
Treated/pH 4	10.4%	33.6%	12.4%	43.4%
Treated/pH 7	16.1%	26.7%	13.5%	43.7%

Others

1639-1635 1616-1600 25.1% 28.5% 24.7% 25.5% 27.8%

4. Conclusions

- The electrostatic complexation between β-LG and the negatively charged CS was fruitful and defined complexes was achieved.
- Thermal stabilization against disintegration at neutral pH was achieved. NP aggregation w before and after thermal treatment.
- Thermal stabilization in the presence of T80 resulted to narrower size distributions upon the neutral pH. Microgel morphology was preserved.
- Morphology from TEM results corresponded to the shape factor extracted from LS results. N core-shell morphology.
- Deconvolution of the FTIR signal exhibited variances from the CD results in the determinastructure of β-LG, attributed to different methods of measuring between the two techniques.
- Colloidal properties of the NPs showed remarkable stability upon the span of one month.
- Potential suitability for encapsulation and delivery of mainly hydrophobic compounds f pharmaceutical applications.

For further information, please visit the following page of our published work: <u>https://www.mdpi.com/2073-4360/16/14/1995</u>

(Pispas, I.; Spiliopoulos, N.; Papagiannopoulos, A. Biocompatible Preparation of Beta-Lactoglobuli Carrier Nanoparticles and Modification of Their Colloidal and Hydropathic Properties by Tween 8 1995.)

the formation of well-
vas present at pH 1.5
e change for acidic to
NPs at pH 7 showed a
tion of the secondary
for food science and
lin/Chondroitin Sulfate 80. <i>Polymers</i> 2024 , 16,

5. References

- 1. Cooper, C.L.; Dubin, P.L.; Kayitmazer, A.B.; Turksen, S. Polyelectrolyte–protein complexes. Curr. Opin. Colloid Interface Sci. **2005**, 10, 52–78.
- 2. Jones, O.G.; McClements, D.J. Biopolymer Nanoparticles from Heat-Treated Electrostatic Protein–Polysaccharide Complexes: Factors Affecting Particle Characteristics. J. Food Sci. **2010**, 75, N36–N43.
- 3. Cortés-Morales, E.A.; Mendez-Montealvo, G.; Velazquez, G. Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Adv. Colloid Interface Sci. **2021**, 295, 102398.
- 4. Henrotin, Y.; Mathy, M.; Sanchez, C.; Lambert, C. Chondroitin sulfate in the treatment of osteoarthritis: From in vitro studies to clinical recommendations. Ther. Adv. Musculoskelet. Dis. **2010**, *2*, 335–348.
- 5. Li, L.; Chunta, S.; Zheng, X.; He, H.; Wu, W.; Lu, Y. β-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chin. Chem. Lett. **2024**, 35, 108662.
- 6. Papagiannopoulos, A.; Vlassi, E. Stimuli-responsive nanoparticles by thermal treatment of bovine serum albumin inside its complexes with chondroitin sulfate. Food Hydrocoll. **2019**, 87, 602–610.
- 7. Vlassi, E.; Papagiannopoulos, A. Nanoformulation of fibrinogen by thermal stabilization of its electrostatic complexes with hyaluronic acid. Int. J. Biol. Macromol. **2020**, 158, 251–257.
- 8. Liu, H.C.; Chen, W.L.; Mao, S.J.T. Antioxidant nature of bovine milk beta-lactoglobulin. J. Dairy Sci. **2007**, 90, 547–555.
- 9. Xiong, Y.L.; Dawson, K.A.; Wan, L. Thermal Aggregation of β-Lactoglobulin: Effect of pH, Ionic Environment, and Thiol Reagent. J. Dairy Sci. **1993**, 76, 70–77.
- 10. Lapanje, S.; Poklar, N. Calorimetric and circular dichroic studies of the thermal denaturation of β-lactoglobulin. Biophys. Chem. **1989**, 34, 155–162.