

Hybrid nanoparticles for possible Nose-to-brain delivery of Ropinirole Hydrochloride

Elmina-Marina Saitani¹, <u>Natassa Pippa¹</u>, Stergios Pispas², Georgia Valsami¹

¹Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece

²Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece

1. Background-Aim

Formulation	Block copolymer	CD	APIS	Added value
Micelles	PEG-b-PLA	α-CD	Doxorubicin	· Sustained and controlled release rate of DOX from SMGel
				 Enhanced and prolonged inhibition efficacy against tumor cells in vitro compared to the free DOX
				·Biocompatibility
NPs/ Micelles Micelles	PCL-b-PDMAEMA · PDMAEMA · PCL	β-CD	 Dexamethasone Genes Doxorubicin 	 Superior rheological characteristics Superior transfection efficiency compared to the most popular nonviral gene transfection reagent High value of (%) encapsulation efficiency
				· pH responsiveness
Supramolecular assemblies	PEG-PCL	β-CD	• Doxorubicin • Curcumin	 Improved anticancer activity compared to free DOX pH-responsive properties
				· Temperature-responsive properties
				· Controlled release rate of DOX and curcumin
Micelles	PEG-PLA	β-CD	Doxorubicin	 Biocompatibility Improved antitumor activity compared to free DOX
Micelles	PEG-PCL	β-CD	Doxorubicin	 Decreased cardiotoxicity compared to free DOX High values of (%) encapsulation efficiency and drug loading
Micelles	·poly(N-isopropylacrylamide)	β-CD	Doxorubicin	· Thermoresponsive properties
	·PEG			· Biocompatibility of blank micelles
Hydrogelated micelles	PEG-b-PAA	α-CD	Cisplatin	 Improved antitumor efficacy compared to free DOX Sustained and controlled release rate of Cisplatin

New biomaterials and supramolecular structures, which encompass the physicochemical and thermotropic properties of both classes of

2.3 Research implementation

3.1 Results – Physicochemical characterization & Stability studies

Colloidal dispersions	w/w	Rh (Cumulant) (nm) ¹	PDI ²	Number of peaks	${R_{h}}_{(Contin)}$ $(nm)^3$	Weight of peak (%)	z-potential (mV)
P407	-	97	0.49	3	1) 4 2) 39 3)598	1) 6% 2) 38% 3) 55%	-20.5±6.0
P407:Tw80	70:30	18	0.52	1	29	100%	-6.1±2.0
(P407:Tw80):MβCD	80:20	106	0.32	2	1) 8 2) 104	1) 3% 2) 97%	-12.9±12.0
(P407:Tw80):HPβCD	80:20	100	0.30	2	1) 9 2) 114	1) 3% 2) 97%	-6.9±8.4

¹ R_h of three replicates of each sample measured by the Cumulant method ² PDI indicates average polydispersity index

³ R_h of three replicates of each sample measured by the Contin method

3.2 Morphological characterization and in vitro cytotoxicity assessment

3.3 In vitro and ex vivo experiments results

4. Conclusions

- The development of strong interactions between polymer, surfactant and CD may be possibly associated with the • formation of an inclusion complex
- The structures visualized in cryo-TEM images had spherical configurations. ۲
- RH release > 90% in all cases, with the drug release exhibiting a progressive increase over the duration of the • experiment.
- Ex vivo permeation studies revealed a significant increase in the percentage of RH loading dose permeated through • rabbit nasal mucosa compared to pure RH solution.
- Further studies are ongoing to evaluate the in vivo serum and brain pharmacokinetic profiles after nasal ٠ administration of the developed formulations.

International Journal of Molecular Sciences

Article

Fabricating Polymer/Surfactant/Cyclodextrin Hybrid Particles for Possible Nose-to-Brain Delivery of Ropinirole Hydrochloride: In Vitro and Ex Vivo Evaluation

Elmina-Marina Saitani ¹, Natassa Pippa ¹, Diego Romano Perinelli ², Aleksander Forys ³, Paraskevi Papakyriakopoulou ¹, Nefeli Lagopati ^{4,5}, Giulia Bonacucina ², Barbara Trzebicka ³, Maria Gazouli 40, Stergios Pispas 60 and Georgia Valsami 1,*0