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1. Background-Aim

• Gold nanoparticles (GNPs) are currently being studied as a means to increase therapeutic efficacy in radiotherapy 
by increasing the local dose in the closest vicinity around the GNP, due to the emission of low-energy Auger and 
Photoelectrons

• Conventional Monte Carlo dosimetry codes are ill-suited, as they offer limited resolution (~mm) and are reliable 
for energies well-above 1 keV

• Discrete physics (“Track-Structure”) models are necessary for studying the energy deposition at the nanoscale by 
these low-energy (sub-keV) electrons

Improvements to the Geant4-DNA Energy-Loss model for Gold:

• The Energy-Loss channels (Ionizations, Excitations, Plasmon) are treated by the Dielectric Theory rather than 
different theories

✓ Ensures self-consistency and Robustness
✓ Accounts for condensed-phase effects
✓ Based on experimental data for Au
✓ Much more accurate calculations of Cross-Section and Stopping Power down to 10eV 
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2. Materials & Methods (1)
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Energy-Loss Function (ELF) for Au



2. Materials & Methods (2)

Relativistic Plane Wave Born Approximation (RPWBA)

The DCS for each sub-shell is the Sum of a Longitudinal (L) and a purely relativistic Transverse (T) term
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2. Materials & Methods (3)
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Energy corrections beyond the First-Born Approximation

• Exchange (EX) and “Coulomb-field” (CO) corrections are included in the Longitudinal term of the DCS and account 
for spin and short range Coulomb interactions respectively 

𝐷𝐶𝑆𝐵𝑜𝑟𝑛−𝐸𝑋−𝐶𝑂
𝐿 𝑤, 𝑇 =  𝐷𝐶𝑆𝐵𝑜𝑟𝑛

𝐿 𝑤, 𝑇 + 𝐵𝑗 + 𝑈𝑗 + 𝐷𝐶𝑆𝐵𝑜𝑟𝑛
𝐿 𝑇 + 2𝐵𝑗 + 𝑈𝑗 − 𝑤, 𝑇 + 𝐵𝑗 + 𝑈𝑗 −

𝐷𝐶𝑆𝐵𝑜𝑟𝑛
𝐿 𝑤, 𝑇 + 𝐵𝑗 + 𝑈𝑗 ∗ 𝐷𝐶𝑆𝐵𝑜𝑟𝑛

𝐿 𝑇 + 2𝐵𝑗 + 𝑈𝑗 − 𝑤, 𝑇 + 𝐵𝑗 + 𝑈𝑗 , for Ionizations

𝐷𝐶𝑆𝐵𝑜𝑟𝑛−𝐶𝑂
𝐿 𝑤, 𝑇 =  𝐷𝐶𝑆𝐵𝑜𝑟𝑛

𝐿 𝑤, 𝑇 + 2𝐸𝑗 , for Excitations

• Based on the Landau Mechanism, there is a critical value of energy-transfer (wc), above which the plasmon can 
decay by transferring all its energy into a single electron, which can then undergo an ionization

𝐷𝐶𝑆𝐵𝑜𝑟𝑛−𝐸𝑋−𝐶𝑂
𝐿 (𝑤, 𝑇) =  𝐷𝐶𝑆𝐵𝑜𝑟𝑛

𝐿 (𝑤, 𝑇 + 2𝐸𝑗) + 𝐷𝐶𝑆𝐵𝑜𝑟𝑛
𝐿 (𝑇 + 2𝐸𝑗 − 𝑤, 𝑇 + 2𝐸𝑗) −

𝐷𝐶𝑆𝐵𝑜𝑟𝑛
𝐿 𝑤, 𝑇 + 2𝐸𝑗 ∗ 𝐷𝐶𝑆𝐵𝑜𝑟𝑛

𝐿 𝑇 + 2𝐸𝑗 − 𝑤, 𝑇 + 2𝐸𝑗 , for plasmon Ionization



3. Results (1)
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Major differences 
between models in 
the sub-keV range!

Landau Mechanism 
significantly 
decreases the SP (up 
to 40%)!



3. Results (2)
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When NIST is used as reference, 
our models are within 10% up 
to 100keV and 2% up to 1MeV!



4. Conclusions
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• A new Geant4-DNA cross section database for electron-GNP interactions that extends down to very low energies is 
under development

• Results reveal significant differences in the important energy range below ~1 keV due to the effects of exchange-
correlation, dielectric screening, and plasmon decay

• The above effects are either neglected or not included fully (or consistently) in other studies

• The already existing Geant4 models clearly overestimate the Stopping Power and Cross-Section in the sub-keV 
energy range

• The new model is self-consistent and robust

• Hopefully it will be integrated in the Geant4-DNA-Au package for electron interactions with Gold
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